Homework 2

Due date: $6^{\text {th }}$ of Jumad Alawal Please solve all problems

Problem 1:

Two mutually coherent beams having parallel electric fields are described by:
$E_{1}=3 \cos \left(k s_{1}-\omega t+\frac{\pi}{5}\right)$
$E_{2}=4 \cos \left(k s_{2}-\omega t+\frac{\pi}{6}\right)$

With amplitudes in kV / m. The beams interfere at a point P where the phase difference due to path is $\pi / 3$ (the first beam having the longer path). At the point of superposition, calculate:
(a) The irradiances I_{1} and I_{2} of the individual beams
(b) The irradiance I_{12} due to their interference
(c) The net irradiance
(d) The fringe visibility

Problem 2:

a. Show in a phasor diagram the following two harmonic waves:

$$
\mathrm{E}_{1}=2 \cos \omega \mathrm{t} \quad \text { and } \mathrm{E}_{2}=7 \cos (\pi / 4-\omega \mathrm{t})
$$

b. Determine the mathematical expression for the resultant wave.

Problem 3:

Standing waves are produced by the superposition of the wave
$y=(7 \mathrm{~cm}) \sin \left[2 \pi\left(\frac{t}{T}-\frac{2 x}{\pi c m}\right)\right]$
and its reflection in a medium whose absorption is negligible. For the resultant wave, find the amplitude, wavelength, length of one loop, velocity, and period.

